Power Laws from Linear Neuronal Cable Theory: Power Spectral Densities of the Soma Potential, Soma Membrane Current and Single-Neuron Contribution to the EEG

نویسندگان

  • Klas H. Pettersen
  • Henrik Lindén
  • Tom Tetzlaff
  • Gaute T. Einevoll
چکیده

Power laws, that is, power spectral densities (PSDs) exhibiting 1/f(α) behavior for large frequencies f, have been observed both in microscopic (neural membrane potentials and currents) and macroscopic (electroencephalography; EEG) recordings. While complex network behavior has been suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general expressions for the PSD transfer functions for a set of measures of neuronal activity: the soma membrane current, the current-dipole moment (corresponding to the single-neuron EEG contribution), and the soma membrane potential. These PSD transfer functions relate the PSDs of the respective measurements to the PSDs of the noisy input currents. With homogeneously distributed input currents across the neuronal membrane we find that all PSD transfer functions express asymptotic high-frequency 1/f(α) power laws with power-law exponents analytically identified as α∞(I) = 1/2 for the soma membrane current, α∞(p) = 3/2 for the current-dipole moment, and α∞(V) = 2 for the soma membrane potential. Comparison with available data suggests that the apparent power laws observed in the high-frequency end of the PSD spectra may stem from uncorrelated current sources which are homogeneously distributed across the neural membranes and themselves exhibit pink (1/f) noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion channels. The significance of this finding goes beyond neuroscience as it demonstrates how 1/f(α) power laws with a wide range of values for the power-law exponent α may arise from a simple, linear partial differential equation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrinsic noise in cultured hippocampal neurons: experiment and modeling.

Ion channels open and close stochastically. The fluctuation of these channels represents an intrinsic source of noise that affects the input-output properties of the neuron. We combined whole-cell measurements with biophysical modeling to characterize the intrinsic stochastic and electrical properties of single neurons as observed at the soma. We measured current and voltage noise in 18 d poste...

متن کامل

Solving the Cable Equation Using a Compact Difference Scheme -- Passive Soma Dendrite

Dendrites are extensions to the neuronal cell body in the brain which are posited in several functions ranging from electrical and chemical compartmentalization to coincident detection. Dendrites vary across cell types but one common feature they share is a branched structure. The cable equation is a partial differential equation that describes the evolution of voltage in the dendrite. A soluti...

متن کامل

Detecting and Estimating Signals in Noisy Cable Structures, II: Information Theoretical Analysis

This is the second in a series of articles that seek to recast classical single-neuron biophysics in information-theoretical terms. Classical cable theory focuses on analyzing the voltage or current attenuation of a synaptic signal as it propagates from its dendritic input location to the spike initiation zone. On the other hand, we are interested in analyzing the amount of information lost abo...

متن کامل

Detecting and estimating signals in noisy cable structures : II

This is the second in a series of papers which attempt to recast classical single-neuron biophysics in information theoretical terms. Classical cable theory focuses on analyzing the voltage or current attenuation of a synaptic signal as it propagates from its dendritic input location to the spike initiation zone. On the other hand, we are interested in analyzing the amount of information lost a...

متن کامل

Electrophysiological characterization of remote chemical synapses.

I. The degree of electrotonic coupling between a given synapse located on a dendrite and the spike trigger zone is a major determinant of the relative influence of that synapse on neuronal firing. The degree of electrotonic coupling between a synapse and the recording site also influences the measurement of the biophysical properties of that synapse. We present theoretical justification for a p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2014